

Fast and accurate lacunarity calculation for large 3D micro-CT datasets

USER MANUAL

https://doi.org/10.1016/j.actamat.2021.116970

http://nanoct.hu/szte/lac3d

http://nanoct.hu/szte/lac3d

(software download link with a set of 700 micro-CT images and a shadow projection image file)

Lac3D software

Software (44 MB): Download

Model Image Dataset (700 images – 9 MB): Download

Lac3D - v3.1

- Please check http://nanoct.hu/szte/lac3d for new versions.
- This software is optimized for 100×100 800×800 pixels, 24- or 32-bit JPEG or BMP images.
- Best case: Bruker SkyScan NRecon -> CTAn segmented output formats.
- File name format: images with "prefix_0000xyzw.bmp" or "prefix_0000xyzw.jpg" filename format. (e.g. in the model dataset: model_ir_rec_voi_00001099.jpg).

Thank you for citing this article:

D. Sebők, L. Vásárhelyi, I. Szenti, R. Vajtai, Z. Kónya and Á. Kukovecz Fast and accurate lacunarity calculation for large 3D micro-CT datasets Acta Materialia (2021) 116970 DOI: 10.1016/j.actamat.2021.116970

More information: sebokd@chem.u-szeged.hu

Developement environment: Lazarus IDE v2.0.8 The professional Free Pascal RAD IDE https://www.lazarus-ide.org/

model_ir_re c_voispr.b mp	model_ir_re c_voi_0000 0400.jpg	model_ir_re c_voi_0000 0401.jpg	model_ir_re c_voi_0000 0402.jpg	model_ir_re c_voi_0000 0403.jpg	model_ir_re c_voi_0000 0404.jpg	model_ir_re c_voi_0000 0405.jpg
model_ir_re c_voi_0000 0406.jpg	model_ir_re c_voi_0000 0407.jpg	model_ir_re c_voi_0000 0408.jpg	model_ir_re c_voi_0000 0409.jpg	model_ir_re c_voi_0000 0410.jpg	model_ir_re c_voi_0000 0411.jpg	model_ir_re c_voi_0000 0412.jpg
model_ir_re c_voi_0000 0413.jpg	model_ir_re c_voi_0000 0414.jpg	model_ir_re c_voi_0000 0415.jpg	model_ir_re c_voi_0000 0416.jpg	model_ir_re c_voi_0000 0417.jpg	model_ir_re c_voi_0000 0418.jpg	model_ir_re c_voi_0000 0419.jpg
		•				•
model_ir_re c_voi_0000 0420.jpg	model_ir_re c_voi_0000 0421.jpg	model_ir_re c_voi_0000 0422.jpg	model_ir_re c_voi_0000 0423.jpg	model_ir_re c_voi_0000 0424.jpg	model_ir_re c_voi_0000 0425.jpg	model_ir_re c_voi_0000 0426.jpg
					•	•
model_ir_re c_voi_0000 0427.jpg	model_ir_re c_voi_0000 0428.jpg	model_ir_re c_voi_0000 0429.jpg	model_ir_re c_voi_0000 0430.jpg	model_ir_re c_voi_0000 0431.jpg	model_ir_re c_voi_0000 0432.jpg	model_ir_re c_voi_0000 0433.jpg
	an a					•
model_ir_re c_voi_0000 0434.jpg	model_ir_re c_voi_0000 0435.jpg	model_ir_re c_voi_0000 0436.jpg	model_ir_re c_voi_0000 0437.jpg	model_ir_re c_voi_0000 0438.jpg	model_ir_re c_voi_0000 0439.jpg	model_ir_re c_voi_0000 0440.jpg

Opening screen

Opening screen with some short instructions and information

Loading a batch of micro-CT images

Lac3D v1.0 - 3D Lacunarity Calculator (2020) Daniel Sebok - sebokd@chem.u-szeged.hu - http://nanoct.hu/szte/lac3d

Selection of a volume of interest (VOI)

• The main properties of the selected VOI are summarized in the table.

TIP: the ROI should be selected on the lowest slice of the VOI !

- On the "Select VOI" tab a suitable volume of interest (VOI) can be determined by selecting a region of interest (ROI, -----).
- The height of the cubic VOI will be set automatically, it is the same as the ROI width.
- (→ the bottom slice # of the VOI + height must be lower than the top slice # : e.g.: 540 + 300 < 1099)
- Tip: by mouse-wheeling over the image, lower or upper slices can be selected.
- After the selection of the VOI it can be sent to process by pressing the Send... button.

Checking the volume of interest (VOI)

Data Processing Box Counting Dimension Lacunarity

The selected volume is automatically saved into a sub-folder, named by the timestamp

(saving the VOI can be time consuming process, please be patient !).

- After selecting the VOI it can be checked on "Data Processing" tab.
- Tip: by mouse-wheeling over the image, lower or upper slices can be selected.

Saving the volume of interest (VOI)

- The selected volume is automatically saved into a subfolder, named by the actual timestamp.
- These volumes can be 3D-rendered in volume processing softwares, e.g. in Bruker CTVox.

Calculating the box counting dimension and the FGM lacunarity

- On "Box Counting Dim" tab, pressing the "Check (fixed grid) Box Sizes" button, the software checks all the possible box sizes that can fit into the VOI.
- After this step, pressing the "Plot" button, the box counting dimension and the FGM lacunarity curves (<u>latter results on the</u> "Lacunarity" tab) will be calculated in one minute.
- <u>The FGM Fixed-grid method:</u> *D. Sebők et al.,*

Fast and accurate lacunarity calculation for large 3D micro-CT datasets, (2021) Acta Materialia 116970,

https://doi.org/10.1016/j.actamat.2021.116970

• By plotting the log N(S) curves initial range the BCD dimension can be obtained.

Calculating the FGM lacunarity curve in one minute

Data Processing Box Counting Dimension Lacunarity 4.5-P In(n,GBM) In(L,GBM) t (s) In(n,FGM) In(L,FGM) \land n 0.0000 4.5556 4 1.0986 4.3544 4.2812 1.3863 3.5-1.6094 4.2093 3-1.7918 4.1379 Ln (Lacunarity) 2.3026 3.8514 2.5 2.7081 3.4524 2.9957 3.3067 2-3.2189 2.8765 3.4012 2.5978 1.5 3.9120 1.5237 4.0943 1.3679 4.3175 0.8684 0.5 4.6052 0.3680 5.0106 0.2052 0+ 0.5 1.5 2.5 3.5 4.5 5.5 2 3 4 5 0 1 5.7038 0.0000 Ln (Box size) ¥

Calculating the traditional GBM lacunarity curve

Data Processing Box Counting Dimension Lacunarity

- Calculating the traditional GBM lacunarity curve (•) is a time consuming process, even for a partial range, but it can be useful to check the result of the (full-range) FGM estimation.
- By selecting the increase step and last value of the box sizes used in GBM, the traditional curve can be calculated.
- The results are automatically saved in the subfolder.